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In this paper, we use the formalism of the first directional
erivative of the matrix exponential, to analyze and compare
everal experimental schemes designed to measure cross-relax-
tion rate constants between two spins, without having to calculate
he effects due to spin diffusion. © 1999 Academic Press

Key Words: first directional derivative; matrix exponential; gen-
rator of the evolution; cross-relaxation rate constant; spin
iffusion.

I. INTRODUCTION

In some situations it is interesting to manipulate a
ystem or its environment so that the evolution of the
ystem becomes independent of one or several paramete
ould otherwise affect it. For example, by applying a dec
ling sequence to a particular nucleus or group of nucle
ffects of some scalar couplings can be removed. Ano
xample is given by the mechanical rotation of a pow
ample along an axis inclined at the magic angle with res
o the staticB0 field, in order to remove or at least to reduce
ffects of chemical shift anisotropy and dipolar or first or
uadrupolar couplings.
Proving that the response of a spin system to an experi

al method does not depend upon a parameterk that would
therwise affect its evolution requires that we first describe
volution under this methodology including the parameterk. In

his manner we can determine the extent to which the evol
as become insensitive to the variation ofk, and the domain o
alues of the other parameters in which the evolution rem
ndependent ofk can be specified.

We shall consider representations in which the density
rator describing the state of a spin system at timet is con-
ected to the corresponding operator at time zero by mea
mathematical expression that contains the exponent

ome time-independent (super-) operator, the generator
volution +, multiplied by the duration of the evolution.
uch cases the first directional derivative of the matrix e
ential (1) can be used to quantify, to first order, the exten
hich the evolution is independent of a parameterk, allowing

1 Fax: 626 301 8186, E-mail: bboulat@hahn.coh.org.
354090-7807/99 $30.00
opyright © 1999 by Academic Press
ll rights of reproduction in any form reserved.
n
n
that
-
e
er
r
ct

r

n-

e

n

s

p-

of
of

the

-
o

n evaluation of the adequacy of the experimental me
mployed. If, in some domain of values of the other exp
ental parameters, the level of independence of the evol
ith respect tok is satisfactory, we can simplify the descr

ion of the evolution of the system, by excluding from it
arameterk.
If a basis is chosen in operator space, assumed to

imensionn, the generator of the evolution is represented
nn 3 n matrix and the same is true of its exponential. In

ollowing the same symbol will be used to describe a su
perator or the matrix representing it. The space} n of n 3 n
atrices is a vector space of dimensionn2. In this space
articular matrix@ is a vector; therefore it specifies a direct

n it. The first derivative of the matrix exponential of+ in the
irection of a matrix@ of the same order as the matrix+
haracterizes to first order the sensitivity of the evolution
espect to the variation of the parameters associated wi@.
he matrix@ can be thought of as then 3 n matrix with zero
verywhere, except at the positions where the parameter w
ffect on the evolution we want to study is located.
In this paper we apply the method of the first derivative

he matrix exponential to analyze and compare experim
hat were proposed to avoid the effects of multi-step mag
ation transfer, referred to as spin diffusion, in the meas
ent of the cross-relaxation rate constant between a pa

pins. Four experiments will be considered: MINSY (2); a
implified version of BD-NOESY (3–5), which we shall denot
D1I-NOESY; QUIET-NOESY (6); and the Modified sYn
hronouS nutatIoN method, or MYSIN (7, 8). We do no
retend that our list of methods is exhaustive. Major exp
ental methods that are left out of the calculations but no
f the discussions are BD-NOESY itself and the related C
OESY (9), as a detailed mathematical analysis was given

hem in (10). MYSIN was analyzed in some detail in (11). For
he methods studied, systems containing a maximum of
pins will be considered (a, b, g, andd). The dependence
he transfer of magnetization from spina to spin b will be
nalyzed as a function of the pattern of cross-relaxation
onstants between the spinsa, b, g, andd. Isolation of the spin
and the spinb with respect to cross-relaxation with the s
and the spind, as well as sensitivity issues regarding
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355EXPERIMENTAL CONTROL OF SPIN DIFFUSION
agnetization transfer between the spina and the spinb, will
e derived from the result of the calculation of the first de
tive of the matrix exponential in appropriate directions.

II. THEORY

We assume that the master equation describing the evo
f the density operator representing the state of the nuclea
ystem can be written in the laboratory frame as

d

dt
s~t! 5 2i@H~t!, s~t!# 1 5@s~t! 2 s eq# 1 Js~t!,

[1]

herei 5 =21, s(t) is the density operator at timet, andseq

s the density operator at thermal equilibrium.H(t) is the
amiltonian at timet, 5 is the (Redfield) relaxation supero
rator, andJ is the exchange superoperator. We assume

he equation above can be transformed to an interaction f
n which the explicit time dependence of the transform
amiltonian and relaxation and exchange superoperator
ero or can be neglected. In this frame the master equ
eads (12)

d

dt
s* ~t! 5 2i@H*A, s* ~t!#

1 5*A~s* ~t! 2 s eq* ! 1 J*As* ~t!. [2]

The superscriptp refers to quantities that have been tra
ormed to the interaction frame, while the subscriptA refers to
uantities that have been approximated. A formal solutio

he equation above is given by (13)

s* ~t! 5 exp$+t%~s* ~0! 2 s* ~`!! 1 s* ~`!, [3]

here + 5 2i[H*A, z ] 1 5A 1 J*A and s*(`) is the
nteraction frame steady-state solution attained asymptot
i.e., defined as limt3` d/dt s(t) 5 0). The superoperat
H*A, z] acts on any operatorB as

@H*A, z #~B! 5 @H*A, B#. [4]

*(`) is related to the equilibrium density operator by
quation

+s* ~`! 5 5As eq*. [5]

If a basis is chosen in operator space, the superopera+,
enerator of the evolution, becomes a matrix. The depend
f the evolution upon a particular matrix@ of the same size a

can be determined to first order by analyzing the
-

on
pin
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d
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erivative of the matrix exponential% t 5 exp(+t) in the
irection of the matrix@.
The first directional derivative of the matrix exponen

t(+) 5 exp(+t) evaluated at+ in the direction@ is defined
s (1)

D@~t, +! 5 lim
h30

1

h
~% t~+ 1 h@! 2 % t~+!!. [6]

The numberh [ C, C the space of complex numbers. T
atrixD@(t, +) represents the dominant term in the expan
f the evolution with respect to matrix perturbationh@ eval-
ated at+. More formally stated,

% t~+ 1 h@! 5 % t~+! 1 hD@~t, +! 1 O~h2@ 2!, [7]

hereO(h2@ 2) denotes elements of degree two or highe
@, with limh30 (O(h2@ 2)/h) equal to the null matrix.D@(t,
) can be calculated according to a formula that depend

he computed eigensystem of+ (1),

D@~t, %! 5 C~ #@ J F~t!!C 21, [8]

here #@ 5 C21@C, C the matrix whose columns are t
igenvectors of%. The expression#@ J F(t) denotes th
adamard product (entrywise product) of the matrix#@ and the
atrix F(t), whose entries are given by

F ij~t! 5 F ji~t! 5 Hexp~tl i! 2 exp~tl j!

l i 2 l j

if l i Þ l j

t exp~tl i! if l i 5 l j,
[9]

hereli, i 5 1, 2, . . . , 5, are theeigenvalues of%. If ^ is the
roduct of two exponentials,̂ 5 %t(+1)%t(+2), it can be easil
roven using Eq. [6] that the first directional derivative of^ in the
irection@ satisfies the “Leibniz rule” for derivations

D@~t, +1, +2! 5 D@~t, +1!% t~+2! 1 % t~+1! D@~t, +2!.

[10]

eneralization to superoperator̂, consisting of the produc
f more than two exponentials,% t(+ 1), % t(+ 2), . . . , and
ossibly containing other time-independent superoperato
roduct elements, is straightforward and will be exempli
elow.

III. APPLICATION

We apply below the formalism presented in Section I
nalyze a class of experiments that were designed to avo
alculation of the effects of spin diffusion in the measurem
f the cross-relaxation rate constant between a pair of s
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356 BENOIT BOULAT
he direct measurement of cross-relaxation or exchange
onstants via conventional multi-dimensional methods is m
ifficult in large molecules, due to multi-step magnetiza

ransfer processes, also known as spin diffusion. In stru
alculations spin diffusion is usually taken into account
erforming refinement procedures using a full relaxation

rix analysis (14). This method, computational by nature,
artially based on theoretical assumptions. As a consequ
ulse sequences are sought to provide a direct experim
easurement of cross-relaxation rate constants, at lea
articular situations, so that the assumptions used for stru
alculations can be supported experimentally. Using the
irectional derivative of the matrix exponential four exp
ents are analyzed: MINSY (2); BD1I-NOESY, a simplified

ersion of BD-NOESY (3–5); QUIET-NOESY (6); and the
ynchronous nutation method (15) in its modified form, MY-
IN (7, 8). We want to stress that even if BD1I-NOESY
erived from the BD-NOESY experiment, our results ap
nly to the simplified version and not to the original exp
ent itself. As mentioned above BD-NOESY and CB
OESY were carefully analyzed in earlier works. In this pa
e wish to be able to compare QUIET-NOESY with a s
lified version of BD-NOESY. We shall discuss the respec
dvantages of BD-NOESY and CBD-NOESY later in
aper. For each method studied we derive expressions f
rst directional derivative in appropriate directions in syst
ontaining a maximum of four spins (a, b, g, andd), but often

t will be sufficient to consider three-spin systems only (a, b,
ndg), especially in the cases of MINSY and MYSIN. In t

our methods, NOE transfer can take place during the mi
ime tm. During that time each method proposes a schem
solate spina and spinb with respect to cross-relaxation w
pin g and spind.
MINSY attempts to isolate the spinsa andb with respect to

ross-relaxation with the spinsg andd by continuously irradiat
ng, during the mixing time, selected bands of frequencies
hich the spinsg andd resonate. BD1I-NOESY performs a sin
and-selective inversion at specific instants during the m

ime, in frequency bands containing the spinsg andd. QUIET-
OESY inverts selectively spinsa and b at specified instan
uring the mixing time. During MYSIN the spinsa and b are

orced to nutate synchronously for the entire mixing time; at
he duration of the mixing time the phase of the RF fiel
witched by 180°, so that the nutation is performed in the re
ense as compared to the first half of it. Of the four meth
YSIN is the only one that does not necessitate a “read” pul

ecord the results of the experiment. At the same time that c
elaxation is active between the spinsa andb, the same proce
s used to overcome spectral overlap (8).

Our analysis is performed in the idealized situation cha
erized by the following assumptions:

(1) Relaxation behavior is based only on dipole–dip
nteractions, neglecting dipole–dipole cross-correlations.
te
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(2) Irradiation in MINSY and MYSIN is assumed to
ontinuous and at a constant amplitudev. Off-resonance e
ects due to RF fields and interference of RF sidebands ar
aken into account. For the effects of the interference o
idebands, the reader should consult Ref. (15).
(3) The inversion pulses in BD1I-NOESY and QUIE
OESY are assumed to be instantaneous. For the effe

eal soft inversion pulses the reader should consult Ref.16).

Symbols of the formsrm and rm
t , m 5 a, b, g, d, stand

espectively for longitudinal or transverse self-relaxation
onstant. Symbols of the formsmn, m, n 5 a, b, g, d, stand for
ross-relaxation rate constants between spinsm and n. The
ymbol v is reserved for the amplitude of a radiofreque
eld. The calculations of the matrix exponential and its
irectional derivative, in suitable directions, are made usi
rogram written by the author that utilizes routines of th
ersion of the linear algebraic package LAPACK (17) for
nding eigenvalues and eigenvectors of matrices.
Within the assumptions expressed above, the genera

he evolution+MINSY active during the mixing time of a MINS
xperiment is written in a three-spin system and in the bas
I za, I zb, I zg, I yg} as

+MINSY 5 21
ra sab sag 0

sab rb sbg 0
sag sbg rg v
0 0 2v r g

t
2 . [11]

At the end of the mixing time in the MINSY experiment t
ensity operators(tm) is written according to Eq. [3] as

s~tm! 5 exp$+MINSYtm%~s~0! 2 sMINSY~`!! 1 sMINSY~`!.

[12]

We calculate directional derivatives of the expression

^MINSY 5 exp$+MINSYtm% [13]

n directions@, that is, according to Eq. [6], quantities of t
orm D@(tm, +MINSY) with

+MINSY 5 1
25 1 3 0

1 27 3 0
3 3 27 75
0 0 275 29

2 . [14]

he values chosen for the various self- and cross-relax
ate constants are quite arbitrary but may correspond t
elaxation rate constants of spins of proton in a partic
esidue of a small protein (18). In Fig. 1 the dotted–dash
urve represents, as a function of the duration of the mi
ime, the quantity
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357EXPERIMENTAL CONTROL OF SPIN DIFFUSION
Tr~D@ 1~tm, +MINSY!I za, I zb!, [15]

here Tr is the symbol for the trace and@1 is the 43 4 matrix
ith zero everywhere except at the positions@13

1 and @31
1

hich are equal to one. The quantity in Eq. [15] thus repres
he sensitivity of the transfer of longitudinal magnetiza
rom spin a to spin b with respect to a variation of th
ross-relaxation rate constantsag. In Fig. 2 the dotted–dash
urve represents, as a function of the duration of the mi
ime, the quantity

Tr~D@ 2~tm, +MINSY!I za, I zb!, [16]

here@2 is the 43 4 matrix with zero everywhere except
he positions@12

2 and@21
2 which are equal to one. The quant

n Eq. [16] thus represents the sensitivity of the transfe
ongitudinal magnetization from spina to spinb with respec
o a variation of the cross-relaxation rate constantsab.

The difference between the two curves is striking. We
erve that the transfer of longitudinal magnetization from

to spin b is much more sensitive to a variation of
ross-relaxation rate constantsab than to a variation of th
ross-relaxation rate constantsag. To a good extent it can b
aid that during a MINSY experiment the spina and the spin

FIG. 1. Variation as a function of the mixing timetm of the quantitie
dashed curve), Tr(D@ 1(t m, QUIET)I za, I zb) (long-dashed curve), Tr(D@ 1(
imensions as the generator of the evolution for the particular expe
volution contain the elementssag which are equal to one. See the te
enerators of the evolution.
ts

g

f

-
n

are well isolated from cross-relaxation with the sping.
solation becomes almost perfect for long mixing time.

BD1I-NOESY and QUIET-NOESY share exactly the sa
enerator of the evolution+BD1I/QUIET, namely in the basis s
I za, I zb, I zg, I zd},

+BD1I/QUIET 5 21
ra sab sag sad

sab rb sbg sbd

sag sbg rg sgd

sad sbd sgd rd

2 . [17]

In this paper we shall assume that both BD1I- and QUI
OESY perform two experiments, whose outputs are

racted. In the first experiment, the spina is inverted. The
perator performing this inversion will be denoted byJa.
ollowing a durationtm/2 after the inversion of the spina,
D1I-NOESY inverts selectively spins in the frequency b

n which spin g (operatorJg) resonates or in the frequen
and in which spind (operatorJd) resonates. Alternatively th
pins in both frequency bands containing respectively spg
ndd can be inverted (operatorJgd). Then the system is aga

eft to evolve by itself for another period of timetm/2. QUIET-
OESY follows the same time development except tha
tead of inverting the spinsg andd, the sequence inverts t
pinsa andb at time t 5 t /2 (inversion operatorJ ). The

D@ 1~tm,+MINSY!I za,I zb! (dotted– dashed curve), Tr(D@ 1(t m, BD1I)I za, I zb)
MYSIN) I ya, I yb) (solid curve). In each case@1 is the matrix of the sam
nt, with zero everywhere except at the positions which in the gene
for explicit details about the values of the matrix element of the p
sTr~
t m,
rime
xt
m ab
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358 BENOIT BOULAT
ontrol experiment that is to be subtracted from the first
eriment follows the same time development, with the dif
nce that the initial inversion of the spina is not performed. I

hus consists of an inversion at timetm/2, the same one that
erformed after this duration in the first experiment, follow
y a period of free evolution of durationtm/2. After subtrac

ion, and with the operator utilized for the inversion at ti
m/2 denoted asJ, the density operator reads

sBD1I/QUIET~tm! 5 HexpH+BD1I/QUIET

tm

2 JJ

3 expH+BD1I/QUIET

tm

2 JJ ~ Jas eq 2 s eq!.

[18]

As (Jas eq 2 s eq) 5 2I za we get

sBD1I/QUIET~tm! 5 HexpH+BD1I/QUIET

tm

2 JJ

3 expH+BD1I/QUIET

tm

2 JJ2I za. [19]

FIG. 2. Variation as a function of the mixing timetm of the quantities
dashed curve), Tr(D@ 2(t m, QUIET)I za, I zb) (long-dashed curve), Tr(D@ 2(
imensions as the generator of the evolution for the particular expe
volution contain the elementssab which are equal to one. See the te
enerators of the evolution.
-
-

Depending on the nature of the inversionJ chosen at tim
m/2, sBD1I(tm) or sQUIET(tm) is obtained.
In the following we calculate directional derivatives in

irection@ of expressions of the form

^BD1I/QUIET 5 HexpH+BD1I/QUIET

tm

2 JJ

3 expH+BD1I/QUIET

tm

2 JJ . [20]

Denoting byD@(tm, BD1I/QUIET) the directional deriva
ive of ^BD1I/QUIET in the direction@ and using the “Leibni
ule,” Eq. [10], we can show that

D@~tm, BD1I/QUIET!

5 D@S tm

2
, +BD1I/QUIETDJ%tm/ 2~+BD1I/QUIET!

1 %tm/ 2~+BD1I/QUIET!JD@S tm

2
, +BD1I/QUIETD . [21]

In the following we shall, when necessary, particula
(t , BD1I/QUIET) toD (t , BD1I) or D (t , QUIET). It

@ 2(t m, +MINSY)I ya, I yb) (dotted– dashed curve), Tr(D@ 2(t m, BD1I)I za, I zb)
MYSIN) I ya, I yb) (solid curve). In each case@2 is the matrix of the sam
nt, with zero everywhere except at the positions which in the gene
for explicit details about the values of the matrix element of the p
Tr(D
t m,
rime

xt
@ m @ m @ m
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359EXPERIMENTAL CONTROL OF SPIN DIFFUSION
hould be noted that multiple inversions during the mixing t
ere proposed for both methods, but to the author’s knowl

hey were never implemented (see discussion below).
In Fig. 1 the dashed curve represents, as a function o
ixing time, the quantity

Tr~D@ 1~tm, BD1I!I za, I zb! [22]

ith

+BD1I 5 1
25 1 3 0

1 27 3 0
3 3 27 0
0 0 0 25

2 [23]

nd @1 defined as the 43 4 matrix with zero everywher
xcept at the positions@13

1 and@31
1 which are equal to one.

ig. 2 the dashed curve represents, as a function of the m
ime, the quantity

Tr~D@ 2~tm, BD1I!I za, I zb! [24]

or the same+BD1I as above and@2 the 43 4 matrix with zero
verywhere except at the positions@12

2 and@21
2 which are equa

o one.

FIG. 3. Variation as a function of the mixing timetm of the quantities
enerator of the evolution+QUIET, with zero everywhere except at the posit

o one. The solid curve represents a single inversion in the middle of the
aking place attm/4, the other at 3tm/4. The dotted–dashed curve represen
nd the third at 5tm/6. See the text for explicit details about+QUIET.
e
ge

he

ng

With +QUIET 5 +BD1I the long-dashed curves in Figs. 1 a
represent, for QUIET-NOESY, quantities correspond

o those given in Eqs. [22] and [24]. These curves dem
trate that in a three-spin system BD1I-NOESY and QUI
OESY are up to a sign totally equivalent. With these
ethods isolation of spina and spin b with respect to

ross-relaxation with sping is very good for short mixin
imes but tends to degrade rapidly for longer times.
ensitivity of the transfer of longitudinal magnetization
ween spina and spinb to a variation ofsab is the best o
he four experiments analyzed. One should keep in m
owever that the inversion in the middle of the mixing ti
as assumed to be instantaneous. In a real experime
ensitivity will be reduced.
Isolation is improved by using multiple inversions (cur

ot shown). However, as presented in Fig. 3, the transf
ongitudinal magnetization between spina and spinb be-
omes insensitive to a variation of the cross-relaxation
onstantsab if multiple inversions are used. In this figu
he quantity

Tr~D@~tm, QUIET!I za, I zb! [25]

s plotted as a function of the mixing time, for one inversio
/2 (solid curve); two inversions, one att /4, the other a

@(tm, QUIET)I za, I zb), where@ is a matrix of the same dimensions as
s which in the generator of the evolution contain the elementsab which are equa
ixing time. The dashed curve represents two inversions during the mixine, one
ree inversions during the mixing time, one taking place attm/6, the second attm/2,
Tr(D
ion

m
ts th
m m
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360 BENOIT BOULAT
tm/4 (dashed curve); and three inversions, one attm/6, the
econd attm/2, and the third at 5tm/6 (dotted–dashed curve
ll the inversions are assumed to be instantaneous. The
QUIET as that above is used and@ is the 43 4 matrix with zero
verywhere except at the positions@12 and @21 which are
qual to one. Of course the control experiment is also mod

he inversions during the mixing time are made in corres
ence with those made in the experiment from which it wil
ubtracted. With our choices for the parameters and
nversions during the mixing time, the sensitivity of the tra
er of magnetization from the spina to the spinb relative to a
ariation ofsab becomes very low. It is not identically zero
he corresponding curve in Fig. 3 seems to indicate. This r
ay be explained by noting that the transfer of magnetiza

rom spin a to spin b is proportional to the deviation of th
agnetization of spina from its equilibrium value. We con

ider the experiment that utilized three doubly selective in
ions during the mixing time. The spina is initially inverted
nd we choose a duration for the mixing time such that
aximum transfer from the spina to the spinb by cross

elaxation will take place during the periods 0 totm/6 andtm/2
o 5tm/6. During the periodtm/6 to tm/2 cross-relaxation
educed, as now the magnetization on the spina is assumed t
e closer to its equilibrium value. Overall, during the perio

o t /2 the cross-relaxation from the spina to the spinb will

FIG. 4. Variation as a function of the mixing timetm of the quantities
f the mixing time (solid curve), Tr(D@(tm, BD1I)I za, I zb) when only the sp
D1I)I za, I zb) when only the spind is inverted in the middle of the mixing
atrix @ is of the same dimensions as the generator of the evolution+BD1I/Q

volution contain the elementssab which are equal to one. See the text fo
m

me

d;
-

ee
-

ult
n

r-

e

e less than that in the experiment with only a single inver
uring the mixing time. As the mixing time passes, the d
tion away from equilibrium of spina magnetization and sp
magnetization tends to equalize. Thus the loss in mag

ation transfer experienced during the first part of the mi
ime cannot be recovered during the second part. Therefo
onger mixing time would be necessary to compensate fo
oss in magnetization transfer. This explains why an exp

ent with a greater number of doubly selective invers
uring the same mixing time becomes less sensitive
ariation of the cross-relaxation rate constant between the
hat are selectively inverted. This points to the fact th
UIET-NOESY experiment in which the doubly select

nversions are considered to be instantaneous is not equi
n the limit of continuous inversions to the MYSIN experime
ut, in such situations, we must be careful in the implem

ation of the formalism of the first directional derivative of
atrix exponential. We will explain this later while discuss

he BD-NOESY experiment.
The difference between BD1I-NOESY and QUIET-NOE

s exemplified in Fig. 4. In this figure the quantity

Tr~D@~tm, BD1I/QUIET!I za, I zb! [26]

@(tm, BD1I)I za, I zb) when the spinsg andd are both inverted in the midd
is inverted in the middle of the mixing time (long-dashed curve), Tr(D@(tm,
e (dashed curve), and Tr(D@(tm, QUIET)I za, I zb) (dotted–dashed curve). T
with zero everywhere except at the positions which in the generator

xplicit details about+BD1I and+QUIET.
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s plotted as a function of the mixing time, with+BD1I/QUIET

qual to

+BD1I 5 1
25 1 3 1

1 27 3 0
3 3 29 2
1 0 2 25

2 . [27]

his quantity follows (up to a sign) exactly the same t
evelopment in BD1I-NOESY and QUIET-NOESY if a
nly if the spinsg and d are inverted in the middle of th
ixing time. If however onlyg (resp.d) is inverted we ca
bserve that in BD1I-NOESY the quantity becomes m
ensitive to spin diffusion with the non-inverted spin. BD
OESY requires, before the start of the experiment, kn
dge of the spin diffusion network of the pair of spinsa andb,

f one wishes to obtain a spin-diffusion-free measuremen
he cross-relaxation rate constantsab. In such situations it i
dvantageous to use QUIET-NOESY, which does not ne
itate this prior knowledge. However if the spin diffus
etwork is known, BD1I-NOESY enables one to make a

ailed analysis of spin diffusion within the network, by allo
ng one to quench selectively specific relaxation pathway

In MYSIN the spinsa and b are continuously irradiate
uring the mixing timetm by means of an amplitude modula
F field with a modulation frequency equal to half the
uency difference between the spinsa andb. At time t 5 tm/2

he phase of the RF field is switched by 180° and keeps
alue for the remaining half of the mixing time. During the fi
alf of the mixing time the superoperator, generator of
volution for MYSIN, +MYSIN, is written in the basis set {I za,
zb, I ya, I yb, I zg} as

+MYSIN 5 21
ra sab v 0 sag

sab rb 0 v sbg

2v 0 r a
t 0 0

0 2v 0 r b
t 0

sag sbg 0 0 rg

2 . [28]

During the second half of the mixing time the generato
he evolution for MYSIN is the transposed+MYSIN

T of +MYSIN. It
s assumed that the resonance frequencies of the spinsa andb
re well separated so that transverse cross-relaxation c
eglected.
At the end of the mixing time the density operator is writ

s

sMSIN~tm! 5 HexpH+ MYSIN
T tm

2 JexpH+MYSINtm

2 JJ
3 ~s* ~0! 2 s* ~`!! 1 s* ~`!. [29]
e

l-

f

s-

-

-

is

e

f

be

We calculate directional derivatives in the direction@ of an
xpression of the form

^MYSIN 5 HexpH+ MYSN
T tm

2 JexpH+MYSNtm

2 JJ . [30]

Denoting byD@(tm, MYSIN) the directional derivative o
MYSIN in the direction@ and using the Leibniz rule enunciat
bove, we obtain an expression of the form

D@~tm, MYSIN! 5 D@S tm

2
, + MYSIN

T D%tm/ 2~+MYSIN!

1 %tm/ 2~+MYSIN! D@S tm

2
, +MYSIND .

[31]

n Fig. 1 the solid curve represents the time developm
uring the mixing time of the quantity

Tr~D@ 1~tm, MYSIN!I ya, I yb! [32]

ith

+MYSIN 5 1
25 1 75 0 3

1 27 0 75 3
275 0 27 0 0

0 275 0 29 0
3 3 0 0 27.1

2 [33]

nd @1 defined as the 53 5 matrix with zero everywher
xcept at the positions@15

1 and@51
1 . In Fig. 2 the solid curv

epresents the time development during the mixing time o
uantity

Tr~D@ 2~tm, MYSIN!I ya, I yb! [34]

or @2 defined as the 53 5 matrix with zero everywher
xcept at the positions@12

2 and@21
2 . From these figures we c

onclude that during a MYSIN experiment the transfer
agnetization from spina to spinb is extremely well isolate

rom any cross-relaxation transfer emanating from spig.
owever the transfer of magnetization from spina to spinb is

he least sensitive of the four methods studied to a variatio
ab.
In Fig. 5, we present for MYSIN and QUIET-NOESY t

ependence of the first directional derivative in an approp
irection upon variation of the value for some matrix elem

n +. For MYSIN the quantity

Tr~D@~tm, MYSIN!I ya, I yb! [35]
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s plotted as a function of the mixing time with@ defined as th
3 5 matrix with zero everywhere except at the positions@15

nd @51 which are equal to one. For QUIET-NOESY t
uantity

Tr~D@~tm, QUIET!I za, I zb! [36]

s plotted as a function of the mixing time with@ the 43 4
atrix with zero everywhere except at the positions@13 and
31 which are equal to one.+MYSIN and+QUIET are as given i
qs. [33] and [23]. The set of curves indicates, in partic
ases, the times at which higher order terms in the develop
see Eq. [7]) of the matrix exponential become effective. In
ase of MYSIN we can observe that the quantity defined in
35] is not sensitive at all to variation of the value ofsag. On
he other hand in QUIET-NOESY the quantity defined in
36] increases in absolute value with increasing values ofsag.

We remark that in Fig. 2 all the curves intersect they axis for
mixing time tm 5 0. The curves in the figure represen

ariation in the transfer of magnetization from spina to spinb
pon variation of the cross-relaxation rate constantsab. When

he duration of the mixing time is zero there cannot be
ransfer of magnetization no matter how different the cr
elaxation rate constant is. This result indicates that
hough it would be preferable to use a short mixing tim
void the effects of spin diffusion, we must bear in mind

act that the mixing time must be long enough to allow

FIG. 5. Variation as a function of the mixing timetm of the quantities T
s21), dotted–dashed curve (sag 5 1 s21); and Tr(D@(tm, MYSIN)I ya, I yb), so
is the matrix of the same dimensions as the respective generator of t

volution contain the elementssag which are equal to one. See the text fo
r
nt

e
q.

.

y
-
n

o
e
r

ood precision in the measurement of the cross-relaxation
onstant.
As mentioned at the beginning of the paper CBD-NOE

9) and BD-NOESY (3–5) were carefully analyzed in (10).
he particular relationship that exists between the cr
elaxation rate constant in the laboratory framesNOE and the
ross-relaxation rate constant in the rotating framesROE for

rigid molecule in the spin diffusion limit (19) is the
ornerstone on which CBD-NOESY is based, to prov
ross-peak intensities connecting two different spectra
ions, which are free of multistep magnetization tran

nvolving one or more steps contained within a single
ion. For spins belonging to parts of the molecule in wh

he spectral densities of motion atv0 and/or 2v0 are no
egligible, the relation which we referred to above betw
NOE and sROE is no longer valid, and the results obtain

rom the experiment cannot be interpreted as easily
D-NOESY the experimenter is advised to utilize multi
elective inversion pulses to invert one or several spe
ands with a repetition rate for the pulses that is
ompared to the cross-relaxation rate constant. In the
here the pulses are square the irradiation becomes a
ontinuous and the experiment is equivalent to MINSY
he pulses are amplitude modulated, an analysis usin
rst directional derivative becomes problematic as
teady-states*(`), knowledge of which is necessary
rder to solve Eq. [3], cannot be approximated by the
perator. In such a case, Eq. [3] could be resolved ste

(tm, QUIET)I za, I zb), long-dashed curve (sag 5 3 s21), dashed curve (sag 5
curve (superimposition of the three casessag 5 1, 2, 3 s21). For all the curve
evolution with zero everywhere except at the positions which in the genthe
xplicit details about+MYSIN and+QUIET.
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tep, with a different steady state for each piecewise
tant value of the amplitude modulated pulse, and the
alue of the solution pertaining to one particular step m
e used as the initial value of the adjacent step. Of co

he same is true for the inversion(s) in QUIET-NOESY
or the single inversion in BD1I-NOESY. However, as lo
s the durations of the inversions are kept short relativ

he entire mixing time, we can approximate the steady-
perators*(`) to be the null operator at all times. We ha
sed this approximation in our analysis by conside

nstantaneous inversions.

IV. CONCLUSION

We have demonstrated that the first derivative of the m
xponential is a very useful tool for analyzing and compa
ith precision a class of experiments aimed at achieving
ame goals. In our case, using this methodology we
tudied a class of experiments designed to measure direc
alue of the cross-relaxation rate constant between a ch
air of spins a and b. MINSY, BD1I-NOESY, QUIET-
OESY, and MYSIN were analyzed and compared. If to

ist of experiments we add the BD-NOESY and CBD-NOE
xperiments that were analyzed previously by different me
e are in a better position to choose the right experime

ace particular situations (type of molecule, cross-relaxa
atterns, and so on). If it can be known in advance tha
olecule or region of the molecule studied is rigid and ha
verall tumbling correlation time which places it in the s
iffusion limit then CBD-NOESY is the experiment of choi
hen these two conditions are not met another method mu

mployed. For short mixing times it was shown that the
ethods analyzed in this paper provide good isolation o

pinsa andb with respect to cross-relaxation with spin outs
he pair. For long mixing times MINSY and MYSIN a
roven to be better in this respect. MINSY, QUIET-NOES
nd BD1I-NOESY offer the best sensitivity with respect t
ariation of the cross-relaxation rate constantsab. As they
void the artifacts associated with continuous irradia
D1I-NOESY and QUIET-NOESY should be chosen w

he mixing time can be kept short. If this condition can
atisfied and prior knowledge of the spin diffusion networ
he spinsa andb cannot be acquired, QUIET-NOESY must
mployed. MINSY or BD-NOESY should be utilized wh
n-
al
t

se
r

to
te

g

ix
g
e

ve
the
en

s

s,
to
n
e
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,

f

onger mixing times are needed. MYSIN necessitates a ca
alibration of the double irradiation pulse. However, bes
ffering an almost perfect isolation for any duration of
ixing time, MYSIN enables us to overcome spectral ove

n some situations this method can thus be employed
rofit.
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